Product Integration

نویسنده

  • Richard D. Gill
چکیده

This is a brief survey of product-integration for biostatisticians. 1 Product-Integration Product-integration was introduced more than 110 years ago by the Italian mathematician Vito Volterra, as a tool in the solution of a certain class of differential equations. It was studied intensively by mathematicians for half a century, but finally the subject became unfashionable and lapsed into obscurity. That is a pity, since ideas of product-integration make a very natural appearance in survival analysis, and the development of this subject (in particular, of the Kaplan-Meier estimator) could have been a lot smoother if product-integration had been a familiar topic from the start. The Kaplan-Meier estimator is the product-integral of the Nelson-Aalen estimator of the cumulative hazard function; these two estimators bear the same relation to one another as the actual survival function and the actual cumulative hazard function. There are many other applications of product-integration in survival analysis, for instance in the study of multi-state processes (connected to the theory of Markov processes), and in the theory of partial likelihood. Ordinary integration is a generalisation of summation, and properties of integrals are often easily guessed by thinking of them as sums of very, very many terms (all or most of them being very small). Similarly, product-integration generalises the taking of products; a product integral is a product of many, many terms (all or most of them being very close to the number 1). Thinking of product-integrals in this simplistic way is actually very helpful. Properties of product-integrals are easy to guess and to understand. The theory of productintegration can be a great help in studying the statistical properties of statistical quantities which explicitly or implicitly are defined in terms of product-integrals. Before defining product-integrals in general and exhibiting some of their properties, we will discuss the relation, in survival analysis, between survival

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of product integration method applied for numerical solution of linear weakly singular Volterra systems

We develop and apply the product integration method to a large class of linear weakly singular Volterra systems. We show that under certain sufficient conditions this method converges. Numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.

متن کامل

Newton-Product Integration for a Stefan Problem with Kinetics

Stefan problem with kinetics is reduced to a system of nonlinear Volterra integral equations of second kind and Newton's method is applied to linearize it. Product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. An example is provided to illustrated the applicability of the method.

متن کامل

Convergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations

In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...

متن کامل

Newton-Product integration for a Two-phase Stefan problem with Kinetics

We reduce the two phase Stefan problem with kinetic to a system of nonlinear Volterra integral equations of second kind and apply Newton's method to linearize it. We found product integration solution of the linear form. Sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

Integration formulas for the conditional transform involving the first variation

In this paper, we show that the conditional transform with respect to the Gaussian process involving the first variation can be expressed in terms of the conditional transform without the first variation. We then use this result to obtain various integration formulas involving the conditional $diamond$-product and the first variation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001